
“ Formal Development
vs. Formal Verification

The OpenComRTOS Example"

1

Eric.Verhulst@altreonic.com

www.altreonic.com

Content

• Why Formal Techniques are needed
• The holy grail of FM
• Formal verification of software verification?
• Formal modeling and formal verification
• SE dependencies

2

• SE dependencies
• OpenComRTOS project FM level 1 project
• Examples of FM lite
• Conclusion

www.altreonic.com

The Wall of Complexity challenge(1)
Murphy‘s law:

things going wrong is a matter of probability
and the odds are getting worse

Focus domain: embedded systems
Products become systems:

‚Smart‘ by using 10‘s of processors
Distributed operation
Connected to other systems (incl. wireless)Connected to other systems (incl. wireless)
Human in the loop
Requirements:

High quality, high reliability
High level of safety, fault-tolerance
Secure operation

And as well:
Cost-efficient (life-cycle cost)
Competitive
Upgradeable

3www.altreonic.com

The Wall of Complexity challenge(2)
The solution is NOT to link the myriad of existing processors,

software tools, etc.
Because they are semantically too different
Because we have too many of them
But none supports scalability requirement
But few support graceful degradation
Time to apply occam‘s razor:Time to apply occam‘s razor:

Back to basics
Get rid of unnecessary complexity and historical ballast
More engineering, less crafting, more scalability and real re-use

=> ‚Trustworthy Embedded Components‘
Reliability, correctness
Safety, fault-tolerance
Security

Formally developed and validated software & IP
Open Technology License: source code + validation & design data

4www.altreonic.com

Why do we need formal techniques?

How precise is the engineer’s brain?

How precise is the management’s brain?

How precise can we define requirements?

How precise can we define specifications?

How precise can we « write » software?

How precisely do we know all dependencies?

How sure can we be of the end-result?

5www.altreonic.com

Can we trust our mind ?

How many « F » do you count ?

FINISHED FILES ARE THE RE
SULT OF YEARS OF SCIENTIF-SULT OF YEARS OF SCIENTIF-
IC STUDY COMBINED WITH
THE EXPERIENCE OF YEARS

6www.altreonic.com

Can we trust our mind ?

How many « F » did you find ?

FINISHED FILES ARE THE RE
SULT OF YEARS OF SCIENTIF-SULT OF YEARS OF SCIENTIF-
IC STUDY COMBINED WITH
THE EXPERIENCE OF YEARS

Did you see the similarity with source code
(debugging) ?

7www.altreonic.com

The holy grail of FM
A verifying compiler uses automated mathematical and logical reasoning methods to

check the correctness of the programs that it compi les . The criterion of
correctness is specified by types, assertions, and other redundant
annotations that are associated with the code of the program, often inferred
automatically, and increasingly often supplied by the original programmer. The
compiler will work in combination with other program development and testing
tools , to achieve any desired degree of confidence in the structural soundness of
the system and the total correctness of its more critical components. ….

An important and integral part of the project proposal is to evaluate the capabilities
and performance of the verifying compiler by application to a representative

8

and performance of the verifying compiler by application to a representative
selection of legacy code , chiefly from open sources. This will give confidence that
the engineering compromises that are necessary in such an ambitious project have
not damaged its ability to deal with real programs written by real programmers .
It is only after this demonstration of capability that programmers working on new
projects will gain the confidence to exploit verification technology in new projects.

Note that the verifying compiler itself does not itself have to be verified . It is
adequate to rely on the normal engineering judgment that errors in a user
program are unlikely to be compensated by errors in the compiler .

The verifying Compiler: A Grand Challenge for Computing Research [Hoare, 2003]

www.altreonic.com

VCC: A Verifier for Concurrent C
VCC is a tool that proves

correctness of annotated
concurrent C programs or
finds problems in them. VCC
extends C with design by
contract features, like pre- and
postcondition as well as type
invariants. Annotated
programs are translated to
logical formulas using the
Boogie tool, which passes
them to an automated SMT
solver Z3 to check their
validity.

(approach used by MS for
verification of Hypervisor)

9www.altreonic.com

Hypervisor example
What is being verified:

• 60 000 lines of source code

• C + x64 assembly

• Properties
- Safety: Basic memory safety

- Security: OS Isolation

- Utility: Hypervisor services guest OS with available resources- Utility: Hypervisor services guest OS with available resources

- About 3 functions per day are formally verified

- Input is C source, but of course, errors have been found

- But:

- what if a new release of the Hypervisor is made?

- what if I change one line of code?

10www.altreonic.com

The question

IF we have 1 million lines of formally verified source
code, what can we do with it?

IF the Hypervisor source code is 100% formally
verified, what will have been proven?

Answer:Answer:

- We will have proof that the source – as it is – is
correct:
- Each piece on itself

- IF we don’t change anything

- What about: concurrency? architecture? efficiency?
reuseability? scalability?

11www.altreonic.com

Formal techniques
In computer science and software engineering, formal

methods are a particular kind of mathematically-based
techniques for the specification, development and
verification of software and hardware systems. The use of
formal methods for software and hardware design is
motivated by the expectation that, as in other engineering
disciplines, performing appropriate mathematical analysis disciplines, performing appropriate mathematical analysis
can contribute to the reliability and robustness of a
design.

However, the high cost of using formal methods means that
they are usually only used in the development of high-
integrity systems, where safety or security is of utmost
importance. (src: wikipedia)

12www.altreonic.com

Levels of FM
Level 0: Formal specification may be undertaken and then a program

developed from this informally. This has been dubbed formal methods
lite. This may be the most cost-effective option in many cases.

Level 1: Formal development and formal verification may be used to
produce a program in a more formal manner. For example, proofs of
properties or refinement from the specification to a program may be
undertaken. This may be most appropriate in high-integrity systems
involving safety or security.involving safety or security.

Level 2: Theorem provers may be used to undertake fully formal machine-
checked proofs. This can be very expensive and is only practically
worthwhile if the cost of mistakes is extremely high (e.g., in critical parts
of microprocessor design).

Practice:

- Formalised specification / design /development

- Formal model checkers (automated once model is build)

- Formal provers (often manual)
13www.altreonic.com

Where do formal techniques fit in?

- Engineering without using mathematics as tool is
not engineering, it is craft-ing of art-ing

- The issue in HW and SW design is complexity:
- Discrete domain vs continuous domain

- State space explodes
- combinatorially (HW)

- exponentially (SW)

- no graceful degradation

- FM help to reduce the state space and to prove the
absence of undesired states

- FM support engineering process, but don’t replace
it as a human activity

14www.altreonic.com

What systems engineering process?

- Do we develop the right system? (1)

- Do we develop the system right? (2)
- (1) is intentional domain => stakeholders

- (2) is extensional domain => process view

- What is good engineering?- What is good engineering?
- Proven heuristics

- Elegance in design

- KISS: keep it simple and smart:
- A complex solution is a problem not well understood.

A simple solution required hard thinking.
- This is were Formal Techniques can help

15www.altreonic.com

SE Process dependency graph
System Functionality

ApplicationApplication

Embedded SWEmbedded SW

ApplicationApplication

Embedded SWEmbedded SW

Stakeholder

Requirements

System

Design

System

Specifications

Implement SW

Validation & Testing

Capabilities

Requirements fulfilled?

Physical System
FirmwareFirmware

Compilers

& Tools
Compilers

& Tools
DocumentationDocumentation HardwareHardware

CPUCPU
Interrupt

controller
Interrupt

controller
MemoryMemory DocumentationDocumentation

Analog I/O
and digital logic
Analog I/O

and digital logic

FirmwareFirmware
Compilers

& Tools
Compilers

& Tools
DocumentationDocumentation HardwareHardware

CPUCPU
Interrupt

controller
Interrupt

controller
MemoryMemory DocumentationDocumentation

Analog I/O
and digital logic
Analog I/O

and digital logic

Capabilities

Implement HW

16www.altreonic.com

Unified Systems/Software engineering

OpenVE ©

Formalized modelling

Simulation

Code generation

OpenComRTOS ©

OpenCookBook©

Formalised requirements &

specifications capturing

Project repository

User
Applications

Test harness

Modeling

OpenComRTOS ©

Formally developed

Runtime support for

concurrency and

communication

SIL 3/4 Controller ©

Control & processing platform

natively supporting distributed

concurrency & communication

Meta-models

Unifying
Repository

Unified architectural paradigm:
Interacting Entities

Unified
Semantics

OpenTracer ©

Visual Event Tracer

17www.altreonic.com

Formal modeling Level 1
for developing OpenComRTOS

Funded R&D project (IWT, Flanders)
Open License Society: technology development
University Gent (INTEC, Prof. Boute): formal modeling
Melexis: co-sponsor and first user (16bit uC)

GUI tools:
graphical modeling/development environmentgraphical modeling/development environment

Goal:
Develop Trustworthy distributed RTOS

Follow OLS SE methodology
Formal verification & analysis: formal modelling

Scalable distributed RTOS
Verify benefits and issues of using Formal Modeling

18www.altreonic.com

Formal modeling tools
Default mathematical approach:

Correctness by proof
Labor and time intensive

Needs specialists

(Human) Error prone process

Tools neededTools needed
State space is exponentially large

Issues always in « hidden corners »

Allow incremental process

Requirements:
Support state machines

Support concurrency and communication

Low notational barrier

19www.altreonic.com

Formal modeling tools: selected options

Investigated:
SPIN, B, CSP (FDR), TLA+/TLC

Outcome of process:
SPIN OK, initially preferred, good documentation, wide

user base, but very C-like style

CSP: hard notation, FDR not readily available

B: waiting for Event B, incremental approach and
compositionality very good

TLA+/TLC
Based on Temporal Logic

Mathematical notation, but standard

Works for any domain (SW, HW, …)

20www.altreonic.com

Benefits of TLA+/TLC
TLA+/TLC home page on

http://research.microsoft.com/users/lamport/tla/tla.html

Initial models reflected “programming style”
That’s the way the mind works (after being conditioned …)

> 28 successive models from 2 pages to 25 pages
Initially very abstract, neglecting details

All successive models were correct, why ?All successive models were correct, why ?
Iterative, incremental process!

Takes 15 minutes from one model to the next

Interplay between software architects and formal modeling engineer
Architectural model polluted by programming concepts

Abstraction from TLA helped to find these issues

Result: much cleaner, safer and performant architecture

TLA models do not prove software is correct (! ?)
TLC proves that Formal Models are correct

21www.altreonic.com

Issues with TLA+/TLC

Needs a few months to get the right modeling style
(especially concurrency)

TLC declares critical section over all actions
In RTOS must be minimal

Requires good know-how of target processor

Why can’t FM not give the minimum critical sections?

State Space is exponential
Millions of states for small application test model

Might need hours to check

Tracing illegal states not always trivial

=> For time-out behaviour we used UPPAAL
22www.altreonic.com

Example
OpenComRTOS entities:

Tasks (= function with its own workspace and context)

Ports: for exchanging L0_Packets
SendPacket_(N)W(T)(async)

ReceivePacket _(N)W(T)(async)

Needs: waiting lists on both sides, buffering

SenderTask

ReceiverTask

Port

Packet
WaitingList
Receivers

Buffer

WaitingList
Senders

23www.altreonic.com

Formally modeled
TypeInvariant == /\ ppool \in [Adr-> Packet \union {NoData}]

/\ PQ \in [FIFO : [Port -> Seq(Adr)],

WL : [Port -> Seq(Adr)]]

/\ chan \in [val: [HLink -> Packet \union {NoData}],

stt: [HLink -> {"free","busy"}]]

/\ TxQ \in [TxChan -> Seq(Packet)]

* /\ tstate \in [UTask ->{"running","ready","wait4anS","wait4anR"}]

24www.altreonic.com

What was wrong?
FIFO : [Port -> Seq(Adr)],

WL : [Port -> Seq(Adr)]]

Both (abstract) models are the same

Natural language is imprecise, semantics are context driven

We forget the hidden assumptions
FIFO := buffering of data

WaitingList := waiting, descheduled

But: both « buffer » and « wait »

Result: either FIFO, either WaitingList

« Trick »: all entries are pointers (Addr) to Packets

Benefits:
Infinite buffering until no more memory (for Packets)

Overflow-free buffering

25www.altreonic.com

Other example
OpenComRTOS layer L1

Traditional RTOS support:
Preemptive scheduling with priority inheritance support

Services with rich and diverse semantics:
Events, semaphores, FIFO-queues, mailboxes, channels, pipes, mutex,

resources, memory pools, …
« distributed semantics »

100’s of RTOS with such support
15 years of experience, 3 generations of RTOS design
L1 layer can be any API

What did we find?
Scheduling algorithm can be improved to reduce worst-case

rescheduling latency and blocking time
All RTOS objects are variations of the same generic « hub » object.

Result: less but faster code
5 KBytes vs. 50 KBytes before

26www.altreonic.com

Impact on code quality

RTOS code is often labeled as a ‘black art’
CPU dependency

Assembler for speed

Asynchronous operation and jump tables

Our results (fully in ANSI-C, Misra-C checked)Our results (fully in ANSI-C, Misra-C checked)
SP(L0): < 1000 machine instructions

MP(L0): < 2000 machine instructions

Needs a few 100 bytes of data RAM

Very portable and maintainable

Runs on MelexCM (16 bit) and Windows

27www.altreonic.com

OpenComRTOS Kernel structure

Output from LDRA 28www.altreonic.com

pa
l.c

ta
sk

_a
pi.

c

lis
t_
ap

i.c 40

60

80

100

OpenComRTOS-L0 src metrics

ALL METRICS
CLARITY

ta
sk

_a
pi.

c

lis
t_
ap

i.c

ta
sk

_s
er
vic

e.
c

sta
rt.
c

se
nd

_p
ac

ke
t_
se

rv
ice

.c

sc
he

du
le
r.c

re
qu

es
t_
se

rv
ice

.c

m
ak

e_
ta
sk

_r
ea

dy
.c

loo
p.
c

da
ta.

c
ALL M

ETRICS

CLARITY

M
AINTAINABILITY

TESTABILITY

0

20

40 CLARITY
MAINTAINABILITY
TESTABILITY

Output from LDRA
29www.altreonic.com

Examples of FM Lite (1)

Safe Virtual Machine for C
- Instruction set (IS) and its behaviour defined in Haskell +

safety extensions

- Haskel used to write VM generator (generic for IS!)

- VM is generated as C program

- C code is never touched and can be compiled to any - C code is never touched and can be compiled to any
target

- Issues related to native vs generic data representation
- Byte order! + side effects at bit level

- Result (IS = ARM Thumb1):
- SVM Program Code: 3.8 Kbytes

- Data requirements: 500 bytes

30www.altreonic.com

Examples of FM Lite (2)
CoolFlux DSP core

- Instruction set and its behaviour defined in nML

- Target Compiler (retarget.com) tools generate:
- VHDL of CPU, C compiler (no optimisation), simulator, debugger

- Close link between CPU architecture and C compiler

- Allows to play “what-if” scenarios- Allows to play “what-if” scenarios
- Optimisation for DSP performance, size, power consumption

- CoolFlux: PMEM (32b), XMEM (24b), YMEM(24b)

- BSP variant: can handle complex 12bit numbers

- Result of porting OpenComRTOS (SP):
- Prog Code: 2 Kwords

- Data requirements: starts at 750 bytes

- Complete port only took 2 weeks (on simulator)
31www.altreonic.com

Conclusions

• Formal techniques are not THE solution

• But they are essential supporting techniques for the
SE process that is a human driven process

• Formal verification without formal modeling has
limited useability as it says nothing about the

32

limited useability as it says nothing about the
architecture

• Formal modeling is very powerful in finding better
solutions and can be more efficient than using only
formal verification. Formalisation is a first step.

• Contact: Eric.Verhulst @ altreonic.com

www.altreonic.com

How it really works: teamwork
Requirements

Specifications

Informal Models

Concept
How ?

Validation

Test and profiling

Formal Models

Implementation Models

Formalise !

Discuss,
think,
review

33www.altreonic.com

From theoretical concept
to products

“If it doesn't work, it must be art.
If it does, it was real engineering”

34www.altreonic.com

